Clustering & Embedding

Peiyan Li Multi-Label Learning 11, 10, 2017

Outline

- > Motivation
- > Paper Sharing
 - AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification [KDD'17]
 - Label Embedding Trees for Large Multi-class Tasks [NIPS'10]
- Summarization

Dataset	Download	Feature Dimensionality	Label Dimensionality			Avg. Points per Label	Avg. Labels per Point	Citations
Mediamill	Download	120	101	30993	12914	1902.15	4.38	[2] + [19]
Bibtex	Download	1836	159	4880	2515	111.71	2.40	[2] + [20]
Delicious	Download	500	983	12920	3185	311.61	19.03	[2] + [21]
RCV1-2K	Download	47236	2456	623847	155962	1218.56	4.79	[2] + [26]
EURLex-4K	Download	5000	3993	15539	3809	25.73	5.31	[1] + [27]
AmazonCat-13K	<u>Download Dataset</u> <u>Download Feature Vector and Label Meta-</u> <u>data</u>	203882	13330	1186239	306782	448.57	5.04	[28]
AmazonCat-14K	<u>Download Dataset</u> <u>Download Feature Vector and Label Meta-</u> <u>data</u>	597540	14588	4398050	1099725	1330.1	3.53	[29] + [30]
Wiki10-31K	<u>Download Dataset</u> <u>Download Feature Vector and Label Meta-</u> <u>data</u>	101938	30938	14146	6616	8.52	18.64	[1] + [23]
Delicious-200K	Download	782585	205443	196606	100095	72.29	75.54	[1] + [24]
WikiLSHTC-325K	Download	1617899	325056	1778351	587084	17.46	3.19	[2] + [25]
Wikipedia-500K	data	2381304	501070	1813391	783743	24.75	4.77	-
Amazon-670K	<u>Download Dataset</u> <u>Download Feature Vector and Label Meta-</u> <u>data</u>	135909	670091	490449	153025	3.99	5.45	[1] + [28]
Ads-1M	-	164592	1082898	3917928	1563137	7.07	1.95	[2]
Amazon-3M	<u>Download Dataset</u> <u>Download Feature Vector and Label Meta-</u> <u>data</u>	337067	2812281	1717899	742507	31.64	36.17	[<u>29]</u> + [<u>30]</u>
Ads-9M	-	2082698	8838461	70455530	22629136	14.32	1.79	[2]

Table 1: Dataset statistics & download

Main challenge:					
Mum chunenge.	Frequency	WikiLSHTC-325K		Amazon-670K	
1. Large scale	1	79,732	(24.82%)	71,817	(10.76%)
<u> </u>	≤ 2	112,788	(35.11%)	309,976	(46.45%)
2. Sparse data	≤ 3	137,596	(42.84%)	435,442	(65.25%)
epa.ee aara	≤ 4	157,541	(49.04%)	509,203	(76.31%)
3. Label imbalance	≤ 5	174,341	(54.27%)	555,905	(83.30%)
	≤ 10	226,956	(70.65%)	637,379	(95.51%)
4. Tail labels	All	321,222	(100.00%)	667,317	(100.00%)

To do what?

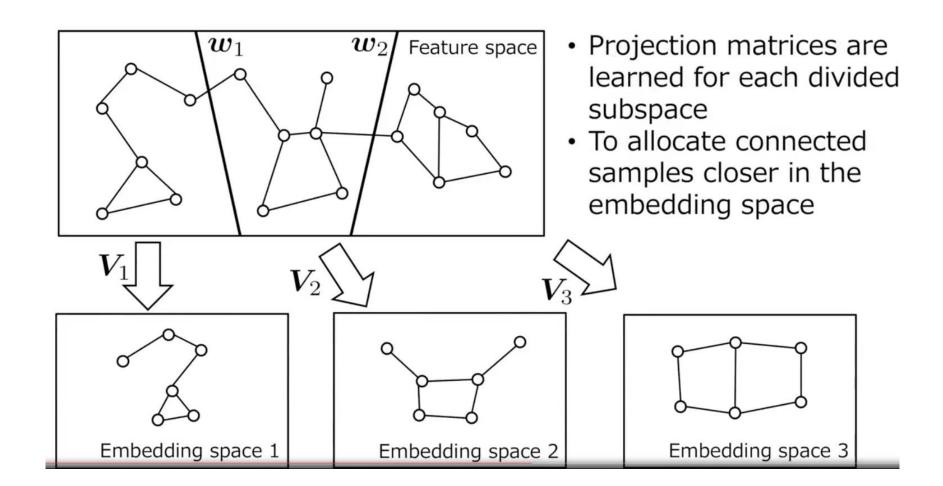
Design more complicated structure like tree, graph, DNN and etc. Clustering, dimensionality reduction, sampling methods, embedding... • Basic Idea:

reproducing the KNN graph of label vectors in the embedding space to improve both the prediction accuracy and speed of the KNN classifier.

Steps:

- Learn to partition data points
- Learn embedding
 - Nearest neighbor search

Overview of AnnexML Training



Partition Data Points

Goal: learn a multi-class classifier

Construct the KNNG as weak supervision

$$N_Y^{(i)} = \arg \max_{S:S \subseteq I, |S|=n, i \notin S} \sum_{j \in S} \frac{y_i^T y_j}{|y_i| |y_j|}$$

Tips: label imbalance, inverted index

$$\max_{w_{c_i}} \sum_{j \in N_v^{(i)}} \log \sigma(w_{c_i}^T x_j) + \sum_{k \in S^-} \log \sigma(-w_{c_i}^T x_k) - \lambda |w_c|_1$$

where $c_i = \arg \max_c w_{c_i}^T x_i$ is the partition to which the i-th point belongs at this time step, $S^- \subset I$

- to assign the approximate nearest neighbors $N_Y^{(i)}$ to the same partition c_i to which the i-th point belongs.
- 2. the randomly selected points S^- should not be included in this partition
- 3. to make w_c sparse

Learning embeddings

Goal: reconstruct the KNNG of label vectors in the embedding space

How; preserving similarities in the original space and the embedded space. Embedding: $z_i = V_c x_i$, find a V_c for partition c.

$$R(x_i, y_i) \coloneqq cos(z_i, z_j) = \frac{z_i^T z_j}{||z_i|| ||z_j||} = \frac{x_i^T V_c^T V_c x_j}{||V_c x_i|| ||V_c x_j||}$$

$$P(x_j|x_i) = \frac{\exp(\gamma R(x_i, x_j))}{\exp(\gamma R(x_i, x_j)) + \sum_{k \in S_c^-} \exp(\gamma R(x_i, x_k))}$$

where $S_c^- \subset I_c$ is the set of indices randomly selected from data points in the corresponding partition c.

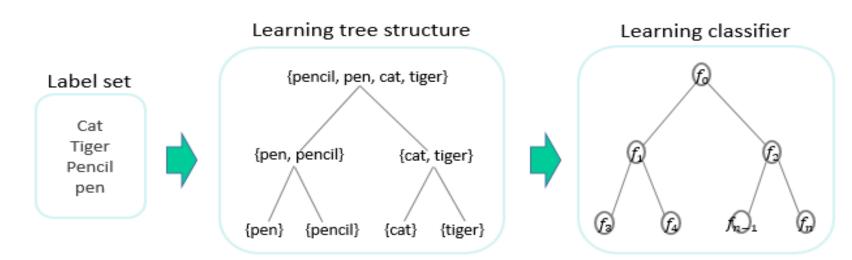
$$\min_{V_c} \sum_{i \in I_c} \sum_{j \in N_{Y_c}^{(i)}} -\log P(x_j | x_i)$$

- AnnexML: Approximate Nearest Neighbor Search for Extreme Multilabel Classification
 - 1. As fast as tree based methods, with higher accuracy
 - 2. Weak supervised clustering (use k-nn as a weak supervision)
 - 3. Tail labels and core labels, which are more important?
- Limitations
 - 1. Too complex ??

Label Embedding Trees for Large Multi-class Tasks

- Introduction
- Each node has
 - Label set
 - Classifier of children
- Label Predictors: $F = \{f_1, f_2, \cdots, f_n\}$
- Label sets: $L = \{l_0, l_1, \dots, l_n\}$

How to split the label set(construction)? How to learn classifier(optimization)?



Basic idea: group together labels into the same label set that are <mark>likely to</mark> be confused at test time.

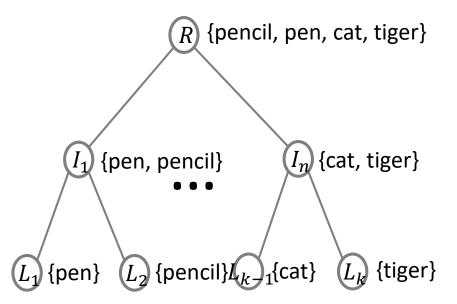
Algorithm 2 Learning the Label Tree Structure

Train k One-vs-Rest classifiers $\bar{f}_1, \ldots, \bar{f}_k$ independently (no tree structure is used). **Compute** the confusion matrix $\bar{C}_{ij} = |\{(x, y_i) \in \mathcal{V} : \operatorname{argmax}_r \bar{f}_r(x) = j\}|$ on validation set \mathcal{V} . **For each** internal node l of the tree, from root to leaf, partition its label set ℓ_l between its children's label sets $L_l = \{\ell_c : c \in N_l\}$, where $N_l = \{c \in N : (l, c) \in E\}$ and $\bigcup_{c \in N_l} \ell_c = \ell_l$, by maximizing:

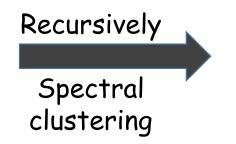
$$R_l(L_l) = \sum_{c \in N_l} \sum_{y_p, y_q \in \ell_c} A_{pq}, \text{ where } A = \frac{1}{2}(\bar{C} + \bar{C}^{\top}) \text{ is the symmetrized confusion matrix,}$$

subject to constraints preventing trivial solutions, e.g. putting all labels in one set (see [4]).

	Cat	Tiger	Pen	Pencil
Cat	1	0.6	0.1	0.12
Tiger	0.6	1	0.2	0.16
Pen	0.1	0.2	1	0.9
pencil	0.12	0.16	0.9	1



Confusion matrix



Basic form of tree loss:

$$R(f_{tree}) = I(f_{tree}(x) \neq y)dP(x, y)$$
$$= \int \max_{i \in B(x) = \{b_1(x), b_{D(x)}(x)\}} I(y \notin l_i)dP(x, y)$$

Where I is the indicator function, D is the depth in the tree of the final for prediction x

$$b_j(x) = argmax_{\{c:(b_{j-1}(x),c)\in E\}}f_c(x)$$

If there is at least one misclassification in the path, penalize it.

Learning With Fixed Label Tree

Goal: minimize the tree loss over the variables F Given training data $\{(x_i, y_i), i = 1, \dots, m\}$

Relaxation 1

$$exmaple$$

$$R_{emp}(f_{tree}) = \frac{1}{m} \sum_{i=1}^{m} \max_{j \in B(x)} I(y_i \notin l_j) \le \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(sgn\left(f_j(x_i)\right) \neq C_j(y_i) \right)$$

where $C_j(y) = 1$ if $y \in l_j$ and -1 otherwise

Replace indicator function with hinge loss and $f_j(x_i) = w_i^T \phi(x)$

$$\sum_{j=1}^{n} \left(\gamma \| w_j \|^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_{ij} \right) \qquad s. t. \forall i, j, \begin{cases} C_j(y_j) f_j(x_j) \ge 1 - \xi_{ij} \\ \xi_{ij} \ge 0 \end{cases}$$

Learning With Fixed Label Tree

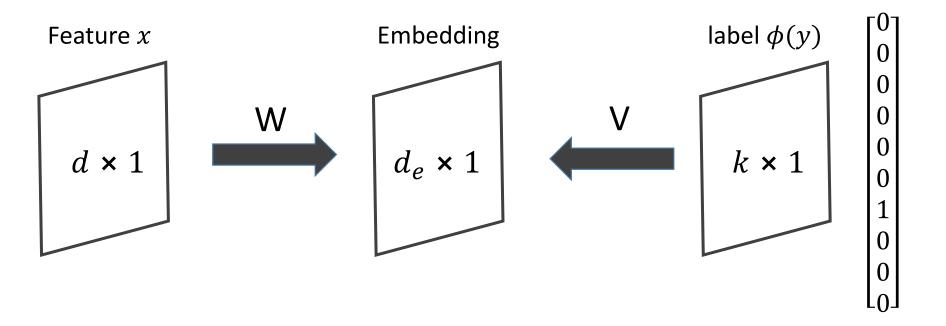
$$\sum_{j=1}^{n} \left(\gamma \| w_j \|^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_{ij} \right) \qquad s. t. \forall i, j, \begin{cases} C_j(y_j) f_j(x_j) \ge 1 - \xi_{ij} \\ \xi_{ij} \ge 0 \end{cases}$$

Relaxation 2

$$\gamma \sum_{j=1}^{n} \|w_{j}\|^{2} + \frac{1}{m} \sum_{i=1}^{m} \xi_{i}$$

s.t.
$$\begin{cases} f_{r}(x_{i}) \geq f_{s}(x_{i}) - \xi_{i}, \forall r, s: y_{i} \in l_{r} \land y_{i} \notin l_{s} \land (\exists p: (p, r) \in E \land (p, s) \in E) \\ \xi_{i} \geq 0 \end{cases}$$

Label Embedding



- $d_e < d$
- For dimension reduction, computation time is reduced.

$$f_{embed} = \underset{W,V}{\operatorname{argmax}} S(Wx, V\phi(y))$$

 $\phi(y)$ is a k-dimensional vector with a 1 in the y-th position and 0 otherwise. How to learn W,V ?

Non-Convex Joint Optimization

minimize
$$\gamma \|W\|_{FRO} + \frac{1}{m} \sum_{i=1}^{m} \xi_i$$

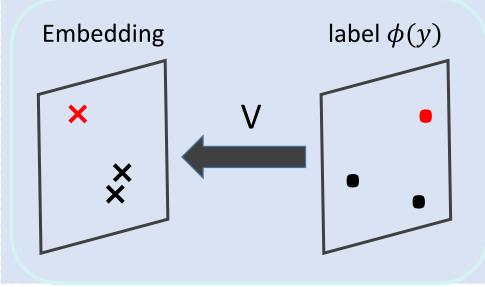
s.t.
$$\begin{pmatrix} (Wx_i)^T V \phi(i) \ge (Wx_i)^T V \phi(j) - \xi_i, \ \forall j \neq i \\ \xi_i \ge 0, \quad i = 1, \dots, m \\ \|V_i\| \le 1 \end{pmatrix}$$

 $f_{embed} = \underset{W,V}{\operatorname{argmax}} S(Wx, V\phi(y))$

 $\phi(y)$ is a k-dimensional vector with a 1 in the y-th position and 0 otherwise. How to learn W,V ?

Sequence of Convex Problems

Learning V



Laplacian Eigenmaps

minimize
$$\sum_{i,j=1}^{k} A_{ij} \|V_i - V_j\|^2$$

s.t.
$$\begin{pmatrix} A = \frac{1}{2} (\bar{C} + \bar{C}^{\mathrm{T}}) \\ V^{T} D V = I \& D_{ii} = \sum_{j} A_{ij} \end{pmatrix}$$

A is the symmetrized confusion matrix. The same steps of learning a tree structure.

$$f_{embed} = \underset{W,V}{\operatorname{argmax}} S(Wx, V\phi(y))$$

 $\phi(y)$ is a k-dimensional vector with a 1 in the y-th position and 0 otherwise. How to learn W,V ?

Sequence of Convex Problems

Learning W

$$\begin{array}{ll} minimize \quad \gamma \|W\|_{FRO} + \frac{1}{m} \sum_{i=1}^{m} \xi_i \\ \\ s. t. \begin{pmatrix} \|Wx_i - V\phi(i)\|^2 \le \|Wx_i - V\phi(j)\|^2 + \xi_i, \ \forall j \ne i \\ \xi_i \ge 0, \quad i = 1, \dots, m \end{pmatrix} \end{array}$$

 $f_{embed} = \underset{W.V}{\operatorname{argmax}} S(Wx, V\phi(y))$

 $\phi(y)$ is a k-dimensional vector with a 1 in the y-th position and 0 otherwise.

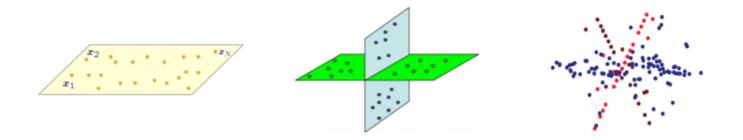
Sequence of Convex Problems

minimize
$$\gamma \|W\|_{FRO} + \frac{1}{m} \sum_{i=1}^{m} \xi_i$$

$$s.t. \begin{pmatrix} \|Wx_i - V\phi(r)\|^2 \ge \|Wx_i - V\phi(s)\|^2 - \xi_i, \\ \forall r, s: y_i \in l_r \land y_i \notin l_s \land (\exists p: (p, r) \in E \land (p, s) \in E) \\ \|V_i\| \le 1, \ \xi_i \ge 0, \ i = 1, \dots, m \end{pmatrix}$$

Summarization

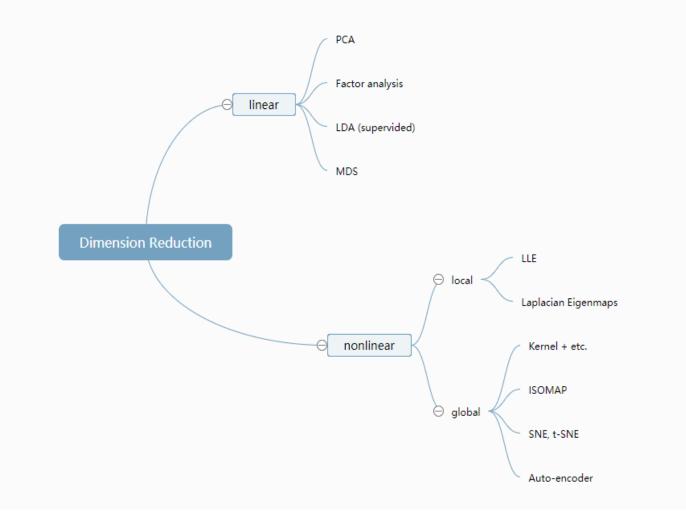
- Label Embedding Trees for Large Multi-class Tasks [NIPS'10]
- Limitations
 - 1. Learning one-vs-all classifier is costly for large-scale
 - 2. Disjoint partition of classes does not allow overlap
 - 3. Tree structure may be unbalanced
- > Goal
 - 1. Jointly learns the splits and classifier weights
 - 2. Allowing overlapping of class labels among children
 - 3. Explicitly modeling the accuracy and efficiency trade-off
- See: Fast and Balanced: Efficient Label Tree Learning for Large Scale
 Object Recognition [NIPS'11]



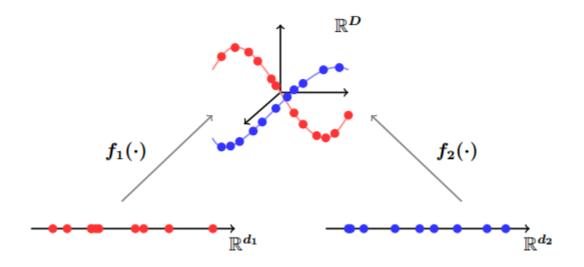
Thank you 🙂

Nonlinear dimensionality reduction

Target: to find a small neighborhood around each data point and connects each point to its neighbors with appropriate weights.



Nonlinear manifolds



[Ehsan, SIAM12]

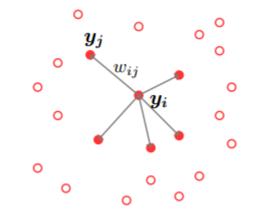
> Mappings are nonlinear

> Tasks:

- Cluster data into manifolds
- > Find low-dimensional representations

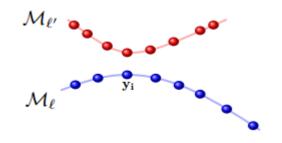
Nonlinear dimensionality reduction

- Nonlinear dimension reduction
 - 1. Build nearest neighbor graph
 - 2. Learn weights
 - 3. Find embedding from weights



- LLE [Roweis, Science'00], LE [Belkin, NIPS'02], ISOMAP [Tenenbaum, Science'00], SNE [Hinton, NIPS'03], T-SNE [Maaten, JMLR'08]
 - Same in the first step
 - Different in the second step

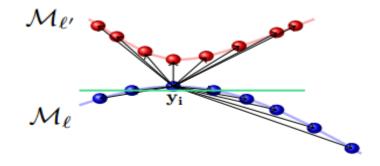
- Method (SMCE)
 - Learn the neighborhood graph and its weights
 - 1. Find embedding from weights



- Weights encode information for both clustering and embedding
 - 1. Deal with manifolds close to each other
 - 2. Deal with manifolds of different dimensions
 - Automatically pick the right number of neighbors

E. Elhamifar and R. Vidal, Sparse Manifold Clustering and Embedding, NIPS'11

- M_l of intrinsic dimension d_l
- Affine span of $d_l + 1$ points from M_l is close to y_l



• Optimization program

$$\min \|q_i \odot c_i\|_1 \text{ s.t.} \left[\frac{y_1 - y_i}{\|y_1 - y_i\|_2} \cdots \frac{y_N - y_i}{\|y_N - y_i\|_2}\right] c_i \approx 0, \ \mathbf{1}^{\mathrm{T}} c_i = 1$$
few close points span affine subspace

• Proximity inducing vector: $q_i = \begin{bmatrix} \|y_1 - y_i\|_2 \\ \sum_{t \neq i} \|y_t - y_i\|_2 \end{bmatrix}^T \cdots \begin{bmatrix} \|y_N - y_i\|_2 \\ \sum_{t \neq i} \|y_t - y_i\|_2 \end{bmatrix}^T$

- 1. Two manifolds marked by blue and red.
- 2. For the blue one on the left, calculate equation above.
- 3. r* -> r+, b* -> b+

$$q_{i} = \begin{bmatrix} \|y_{1} - y_{i}\|_{2} \\ \overline{\sum_{t \neq i} \|y_{t} - y_{i}\|_{2}} & \cdots & \frac{\|y_{N} - y_{i}\|_{2}}{\sum_{t \neq i} \|y_{t} - y_{i}\|_{2}} \end{bmatrix}^{T}$$

few close points

Original:

$$\begin{aligned} \mathbf{Y}_i &= [y_1 - y_i \quad \cdots \quad y_N - y_i] \\ \|\mathbf{Y}_i c_i\|_2 &\leq \epsilon, and \quad \mathbf{1}^{\mathrm{T}} c_i = 1 \end{aligned}$$

-

Target:

The elements of q_i should be chosen such that the points are close to y_i have smaller weights, allowing the assignment of nonzero coefficients (c_{ij}) to them.

After obtaining $C = [c_{ij}]$, we can use it to do clustering, dimensionality reduction.

Exploited the self-expressiveness property of the data for

- Clustering subspaces
- Clustering and embedding of nonlinear manifolds

→ AnnexML, an extreme multilabel classification algorithm